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Optical scanning holography (OSH) records both the amplitude and phase information of a 3D object by a 2D scan. To recon-
struct a 3D volumetric image from an OSH hologram is difficult, as it suffers from the defocus noise from the other sections.
The use of a random phase pupil can convert defocus noise into speckle-like noise, which may require further processing in
sectional image reconstruction. In this paper, we propose a U-shaped neural network to reduce this speckle haze.
Simulation results show that the proposed method works effectively and efficiently both in simple and complex graphics.
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1. Introduction

As a versatile digital holography technique, optical scanning
holography (OSH) has been widely used in microscopy[1],
remote sensing[2], image encryption, etc[3,4]. In OSH, the object
is scanned by the heterodyne beams, which are launched from
the same light source with frequency difference generated by the
frequency shifter. Unlike traditional digital holography, OSH
can record 3D objects into 2D holograms by single-pixel 2D
scanning. The hologram can preserve the amplitude as well as
the phase information of the object. One can obtain this object’s
information using hologram reconstruction.
In the image reconstruction, there are two important issues.

The first one is auto-focusing, i.e., finding the accurate
reconstruction distance, and the other is choosing an applicable
reconstruction method with increasing depth resolution as well
as less defocus noise. A great deal of research have proposed to
retrieve the reconstruction distance automatically, such as the
extended focused imaging[5], structure tensor[6], and connected
domain[7]. Researchers also used the time-reversal (TR) tech-
nique to get the depth information by calculating the pseudo-
spectrum of the TR matrix generated from the hologram[8].
To further improve the depth resolution, methods based on dou-
ble measurements have also been proposed, including the use of
a dual-wavelength laser[9], double-location detection[10], and the
reconfigurable pupil[11].
The out-of-focus haze, also known as the defocus noise, is

undesired residual signals from other sections. Many methods

have been presented to conduct image reconstruction and to
suppress the defocus noise, such as inverse imaging[12,13],
Wiener filtering[14], and 3D imaging[15]. For example, Zhou
et al. used a random phase pupil to transfer the defocus noise
into speckle-like patterns[16]. This noise can be further sup-
pressed by average[16], connected component[17], and image
fusion[18].
In recent years, deep learning has undergone rapid develop-

ment and has found wide applications in some areas, such as
language processing, image processing, biomedical andmachine
visions, as well as digital holography[19–22]. Ren et al. presented a
convolution neural network (CNN) based on the regression
method to achieve fast auto-focusing[23]. The CNN has been
trained by a set of holograms a priori. Pitkäaho et al. showed that
CNNs can also predict the in-focus depth by learning from half a
million hologram amplitude images in advance[24]. Compared
with traditional methods, their work showed better precision
and efficiency. Rivenson et al. used deep learning to rapidly per-
form phase recovery and image reconstruction simultaneously.
The calculation was based on only one hologram, and could
reconstruct both the phase and amplitude images of the
objects[25]. Nguyen et al. presented a phase aberration compen-
sationmethod based on deep learning CNN[26]. It could perform
automatic background region detection for most aberrations.
Deep learning has also proved an effective tool in molecular
diagnostics[27], as Kim et al. trained the neural networks to clas-
sify the holograms without reconstruction. The captured
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holograms of the cells were used as raw holograms to train the
neural networks, which were able to classify individual cells
afterwards.
In this paper, we present for the first time and to the best of

our knowledge, a reconstruction method based on a U-shaped
convolutional neural network (U-net) to remove the speckle-like
defocus noise in a OSH system. The U-net approach is adopted
to learn the mapping between various holograms and the corre-
sponding sectional images. Unlike other CNN methods, which
require large training data sets, U-net can work with very few
training images and yields more precise results. The proposed
method can eliminate the speckle-like noise generated by the
random phase pupil. Simulation results show that the algorithm
works well with both simple and complex graphics. It also
outperforms the traditional reconstruction methods in terms
of better sectional image quality and significantly faster process-
ing speed.
This paper is organized as follows. In Section 2, we first intro-

duce the OSH system and the principle of random phase pupil
system. The theory of U-net deep learning is also explained in
this section. Simulation results are presented and discussed in
Section 3 to demonstrate the visibility of the proposed method.
The conclusion remarks are given in Section 4.

2. Principle

2.1. Optical scanning holography

The holographic system is illustrated in Fig. 1. A He–Ne laser is
set at the starting position of the system to launch a cluster of
planar waves. The waves will be split into two beams by beam
splitter BS1. An acousto-optic frequency shifter (AOFS) is used
to shift one of the frequencies from ω0 to ω0 �Ω. The two
beams will pass though different mirrors, pupils, and lenses,
respectively, and then converge at BS2. After that, the combined
beam will be used to scan the object via the X–Y scanner. In the
meantime, lens L3 will collect the light from the object. The gen-
erated electrical signal from the photo detector (PD) will be
transformed into a hologram via a band-pass filter and further
demodulation process.

In a random phase pupil holographic system, the two pupils
are set as p1�x, y� = exp�j2πr�x, y�� and p2�x, y� = 1, where r�x, y�
is a random function, and its value is chosen from a uniform
distribution between (0, 1). The random phase pupil is widely
used in OSH to disperse the defocus noise from other sections
into speckle-like patterns[16]. If we discretize the object into N
sections along the z-axis, then the hologram can be expressed as

g�x, y� =
XN
i=1

F−1
�
F �O�x, y; zi�� × exp

�
−j

zi
2k0

�k2x � k2y�
�

× P
�
1

�
−
zikx
f

, −
ziky
f

��
, (1)

where O�x, y; zi� is the complex amplitude function of the
object, x and y are space coordinates of the object, and zi indi-
cates the axial coordinates of the ith section. kx and ky are fre-

quency domain coordinates, and k0 = 2π
λ is the wavenumber,

where λ represents the wavelength of the laser. F and F−1 indi-
cate the Fourier transformation and inverse Fourier transforma-
tion, respectively. P1 is the frequency domain expression of
p1�x, y�, � represents the conjugate operation, and f is the focus
distance of the lens.
To recover the jth section, we can set the decoding pupils as
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�
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distance is set as zj. In this case, the recovered image becomes
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where Iout�x, y; zj� is the reconstructed sectional image at zj,
which contains useful signal O�x, y; zj� and the speckle-like
noise signal N�x, y; zj�. The speckle noise can be derived by sub-
stituting Eq. (1) into Eq. (2) and can be expressed as[16]
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For a better sectioning effect, this noise should be further
eliminated. One can suppress the speckle haze by averaging
multiple section images or using the connected component
methods[16,17]. These methods succeed in suppressing overrid-
ing noise. However, they all require multiple frames to solve
the problem. This would greatly reduce the efficiency. Here,
we present a special CNN-based method, U-net, to suppress
the speckle-like noise. In addition to having no requirement
of prior information, the U-net method also features a simpler,

He-Ne
Laser BS1 AOFS

M1

M2

p1(x,y) L1

BS2

L2

p2(x,y)

X-Y Scanner

Object
L3

PD

@BPF

Fig. 1. OSH system setup[28]. BS1 and BS2, beam splitter; M1 and M2, mirror;
AOFS, acousto-optic frequency shifter; p1 (x, y) and p2 (x, y), pupils; L1, L2,
and L3, lens; PD, photo detector; BPF, band-pass filter.
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shorter operation time and is more robust than the conventional
methods mentioned above.
Unlike other CNNmethods, which require large training data

sets, U-net can work with very few training images and yield
more precise results[29,30]. This is the main advantage, especially
in the situation where it is difficult to retrieve large data sets,
such as biological applications.

2.2. U-shaped convolutional neural network

The neural network is organized by a contracting path as well as
an expansive path. As the appearance is very similar to the letter
‘U’, this neural network has been named U-net. U-net was first
presented to segment the biomedical image and has proved to be
a very effective end-to-end image processing tool[30,31].
Figure 2 illustrates the architecture of the U-net, which con-

tains two paths: the contracting one (convolution + downsam-
pling) and the expansive one (deconvolution + upsampling).
The contracting path has many layers. Each layer consists of
two 3 × 3 convolutions, followed by a rectified linear unit
(ReLU). For downsampling, a 2 × 2 max pooling operation with
stride 2 is used. While for the expansive path, the pattern of
deconvolution with upsampling is repeated. A 2 × 2 convolution
is used for upsampling, and two 3 × 3 convolutions followed by a
ReLU activation function are included in the deconvolution
layers. In the final layer, the required features are retained while
those structures related to speckle noise are discarded.
It is worth noting that the number of feature channels are cop-

ied and cropped after each downsampling process, as denoted by
the white boxes in Fig. 2. These contracted high resolution fea-
tures are thenmerged and combined with the upsampled output
to generate a more precise output.
For theL-th convolutional layer, we assume there areNL fea-

ture maps with a size k × k, and it can be expressed as hLj ,

j = 1, 2, : : : ,NL. The next convolutional layer hL�1
j can be

expressed as

hL�1
j = ReLU

�XNL

i=1

hLi ⊗ wL�1
ij � bL�1

j

�
, (4)

where ⊗ is the convolution operation, and wij and bj are the
weight and bias that need to be learned via training, respectively.
ReLU is an activation function, which can be denoted as
ReLU�x� =max�0, x�. In a U-net model, when the inputs are
transmitted between neurons, the weights are applied to the
inputs and passed into an activation function ReLU along with
the bias. The weights are essentially reflecting how important an
input is, while the value of bias controls when the activation
function is activated. In the process of downsampling, we need
to pad the feature maps with zero first. This process can make
the next convolutional layer feature maps have the same size
after convolution. In the next step, we utilize the max pooling
to choose the maximum value as the representation among a
small region. In this way, the size of the feature maps will be
smaller. The process of upsampling is similar with the down-
sampling, except that the upsampling needs to extend the size
of the feature maps with zero. It is worth noting that lots of use-
ful information will be dropped out in the process of downsam-
pling. To preserve enough significant information, U-net
provides an approach to merge the symmetric parts of convolu-
tion and deconvolution.
To suppress the defocus noise, a sufficient training set should

be collected. The training set contains the encoded hologram
with speckle-like noise and the labeled image without noise.
In the training process, the reconstructed images with noise
are set as input images, which would propagate forward to
obtain the predicted images. The loss function L is defined as
a function between the predicted image and the labeled standard
image without noise by mean square error (MSE),

L =
1
M

XM
i=1

jyi − ŷij2, (5)

where M is the total count of pixels, yi is the labeled standard
image, and ŷi represents the predicted image.

3. Results and Discussion

The proposed method was demonstrated via simulation. The
optical process was simulated with Matlab, while the
reconstruction results based on the proposed U-net method
were generated with Pytorch. The GPU used in the simulation
was NVIDIA GTX 1080Ti with 16 GB memory. A He–Ne laser
centered at 632.8 nm was used as the source. The focal length of
the lens L1 and L2 was f = 75mm. An object with two sections
located at z1 = 30mm and z2 = 30.3mm was used in the simu-
lation. The size of each section was 2mm × 2mm, which was
sampled to 256 × 256 pixels.

Fig. 2. The architecture of U-net. ‘Conv, 3 × 3’ represents a 3 × 3 convolution
kernel with the ReLU activation function. ‘Padding=same’ means that the
matrix dimensions of the input and output in the convolution layer are the
same. ‘Maxpool 2 × 2’ represents the function to choose the maximum value
from a 2 × 2 matrix. ‘Upsampling and conv, 2 × 2’ stands for upsampling using
a 2 × 2 convolution kernel. Each blue box represents a multi-channel feature
map, while the white ones represent the copied feature maps.
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3.1. Simple graphics

The U-net method was first verified with simple graphics, such
as the English alphabet. In the training process, it is important to
generate enough data sets. In the simulation, 386 original images
were used, with each one passing through 27 different random
phase pupils in the OSH system as shown in Fig. 1. In this way,
10,422 data sets were produced for training. Some of the sample
images with speckle-like noise are shown in Fig. 3, which are
used as the input images of the U-net model. The speckle-like
noises are generated from the other section based on Eqs. (1)
and (2). The sectional images are in the database as mentioned
above. One can observe from this figure that different speckle-
like noise was added according to Eq. (2). The corresponding
noise-free images, also denoted as the standard images or refer-
ence images of the U-net, are shown in Fig. 4.
To accelerate the convergence, we chosed the method for sto-

chastic optimization with a learning rate equal to 0.0001[32]. The
parameters less than 0.5 were dropped out to prevent over-fit-
ting[33]. The relationship between the training loss and the iter-
ation times is shown as the blue curve in Fig. 5, while the orange
one represents the relationship between the validation loss and
the iteration times. It can be seen from this figure that the loss of
the training data as well as the validation data both decrease with
the iteration times.

The first simulation results proved that the U-net architecture
really did a good job of learning the characteristics of speckle-
like noise. Here, we demonstrate the reconstruction results
under different random phase pupils in Fig. 6. Three different
test images were used to verify the proposed method. The image
with the letters ‘ABC’was in the training data sets, while the ones
with letter ‘XYZ’ and a Chinese character were not included.
One can observe from this figure that the speckle-like noise
has been eliminated successfully.

Fig. 3. Input images for the U-net model.

Fig. 4. Standard images of the U-net model.

Fig. 5. The relationship between the loss function and iteration times.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. The reconstruction results with U-net. (a), (d), and (g) are the original
images. (b), (e), and (h) are input images with speckle-like noise generated by
different random phase pupils. (c), (f), and (i) are the corresponding recon-
structed output images.
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To evaluate the reconstruction effect with the U-net, we com-
pare the results with two important factors: the peak signal-to-
noise ratio (PSNR) and the structural similarity (SSIM). The
PSNR can be defined as[34]

MSE =
1

M1N1

XM1

i=1

XN1

j=1

�X�i,j� − Y�i,j��2, �6�

PSNR = 10 lg

��2n − 1�2
MSE

�
, (7)

where X�i, j� is the output image, while Y�i, j� is the correspond-
ing reference image.M1 and N1 are the number of columns and
rows, respectively, and MSE stands for mean square error.
The SSIM is used to quantify the visibility of differences

between the output image and the corresponding reference
image. The quality assessment is based on the degradation of
structural information and can be expressed as[35]

SSIM = l�X,Y� × c�X,Y� × s�X,Y�, (8)

where

l�X,Y� = 2μXμY � C1

μ2X � μ2Y � C1
,

c�X,Y� = 2σXμY � C2

σ2X � σ2Y � C2
,

s�X,Y� = σXY � C3

σXσY � C3
,

where X and Y represent the output image and the reference
image, respectively. μX and μY are the means of X and Y , σX
and σY are the variances of X and Y , σXY is the covariance of
X and Y , respectively, and C1, C2, and C3 are constants. In gen-
eral, C1 = �K1 × L�2, C2 = �K2 × L�2, and C3 = C2=2. Here, we
assume that K1 = 0.01, K2 = 0.03, and L = 255.
The quantified assessment results are shown in Table 1. One

can observe from the row ‘Input VS Original’ that, the PSNR for
all cases is all around 15 dB, and the SSIM is quite small at
around 0.06. This means that the speckle-like noise has greatly
degraded the signal-to-noise ratio, and the similarity between
the noisy images and the original ones has also been reduced
to a rather low degree. While for the scenario of ‘Output VS
Original’, the PSNR for all cases is increased above 32 dB,
and the SSIM is also raised close to 1. This indicates that speckle
haze has been eliminated successfully, and the output images of
the U-net have small distortion and high similarity with the
original ones.
It is worth noting that the computation time for all cases are

around 33.3 ms, and the computer is configured as NVIDIA
GTX 1080Ti with 16 GB memory.
We have also measured the sectioning results of the Chinese

character in Fig. 6(h) with different noise ratios. The noise is
generated from different sections with the traditional

method[16], as is shown in Figs. 7(a)–7(c). The sectional images
generated by the U-net method are shown in Figs. 7(d)–7(f),
respectively. Table 2 presents the corresponding quantified
results. It can be seen from Fig. 6 and Table 2 that for sectional
images with different noise ratios, the values of the PSNR and
the SSIM all increase significantly (with the PSNR around
32 dB and the SSIM close to 1). This result shows that the U-
net method can successfully remove the defocus noise with dif-
ferent noise ratios.

3.2. Complex graphics

In this subsection, the situation of complex graphics is tested.
Some samples of the complex graphics are shown in Fig. 8, in
which some standard digital image processing images are
included, such as Barbara, Cameraman, and Peppers. These
images were used in the OSH system to generate holograms with
complex graphics in order to test the noise-suppressing ability of
the proposed method.

Table 1. The Quantified Performance of the U-net Using Different Test
Imagesa.

Test sample MSE PSNR (dB) SSIM (∈[0,1])

Input ‘ABC’ 1909.14 15.32 0.5782

VS ‘XYZ’ 1942.50 15.25 0.6171

Original ‘光’ 2138.30 14.80 0.5584

Output ‘ABC’ 15.8 36.15 0.9535

VS ‘XYZ’ 36.4 32.52 0.9326

Original ‘光’ 32.7 32.98 0.9383

a‘Input’ is the input image of the U-net, in which the speckle-like noise is
added. ‘Original’ stands for the original reference image. ‘Output’ means the
denoised output image of the U-net.

Table 2. The Quantified Performance of the U-net with Different Noise Ratios.

Test sample in Fig. 7 MSE PSNR (dB) SSIM (∈[0,1])

Input (a) 2256.34 13.35 0.3732

VS (b) 2387.33 12.33 0.3245

Original (c) 2489.95 10.58 0.2788

Output (d) 33.1 32.56 0.9305

VS (e) 32.1 32.47 0.9289

Original (f) 33.7 32.18 0.9245
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To generate the training data sets, 364 original images were
used, with each one passing through 30 different random phase
pupils. In this way, 10,920 data sets were produced for the U-net
model. It is important tomention that the speckle-like noises are
generated from the other section based on Eqs. (1) and (2). The
sectional images are in the database as mentioned above.
The loss function for both the training data and the validation

data were calculated in the training process. The results are
shown in Fig. 9. As can be seen from this figure, the loss function
decreases with the iteration times. One can expect that the defo-
cus noise can be suppressed after 400 iterations. The generaliza-
tion gap between training loss and validation loss is measured to
be around 0.002 in this case.
The reconstruction results using the U-net with complex

graphics are shown in Fig. 10. Two complex graphics named
‘Monkey’ and ‘Rice’ were used to test the U-net method. It
can be seen from this figure that most of the speckle haze has
been eliminated.
The quantified evaluation results are listed in Table 3. By

comparing the data in the row ‘Input VS Original’ with that

in the row ‘Output VS Original’, one can observe that the values
of the PSNR and the SSIM have both increased after the U-net
processing. The increased PSNR represents the improvement of

Fig. 8. The original images for generating the training data sets.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Sectioning results with different noise ratios based on the U-net
method.

Fig. 9. The relationship between the loss function and iteration times in the
complex graphics.

(a) (b) (c)

(d) (e) (f)

Fig. 10. The test results of the complex graphics with U-net. (a),(d) are the
original images of ‘Monkey’ and ‘Rice’. (b),(e) are the input images with
speckle-like noise generated by different random phase pupils. (c),(f) are
the corresponding output images of the U-net.

Table 3. The Quantified Performance of the U-net Using Complex Test
Images.

Test sample MSE PSNR (dB) SSIM (∈[0,1])

Input VS ‘Monkey’ 996.3 18.15 0.5613

Original ‘Rice’ 1218.2 18.15 0.5613

Output VS ‘Monkey’ 278.5 23.68 0.8127

Original ‘Rice’ 57.6 30.53 0.8378
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the signal-to-noise ratio, which means that the noise has been
decreased. While the variation of the SSIM suggests higher sim-
ilarity between the output images of the U-net and the origi-
nal ones.
It can also be concluded from Tables 1 and 3 that as the input

image becomes more complex, the improvement of the PSNR
would degrade. This indicates that it is harder for U-net to dis-
tinguish the features between the image and the speckle noise
when the complexity of the image increases.

3.3. Reconstruction of 3D objects

To verify the feasibility of eliminating the defocus noise in OSH,
we have also evaluated the reconstruction results of two different
3D objects in this subsection. The performances between the
conventional reconstruction method and the proposed one
are also analyzed.
The first 3D object used in the simulation contains two slices,

as is shown in Fig. 11(a). Each slice has a size of 1mm × 1mm
and are sampled to 256 × 256 pixels. The focal length of the lens
in the optical system is set as 75 mm. The locations of the two
slices are z1 = 9mm and z2 = 10mm, respectively. The wave-
length of the laser is 632.8 nm. Figure 11(b) shows the recorded
hologram.
Figures 12(a) and 12(b) show the retrieved sectional images

using the conventional algorithm[16], with reconstruction dis-
tance at z1 = 9mm and z2 = 10mm, respectively. One can see
from this figure that at the front plane (z1 = 9mm), the slice
“UESTC” is in focus, and the image from the other section
has become defocused noise spreading around the figure. This
speckle-like noise obviously degrades the image quality, which
results in a poor 3D reconstruction effect.While the correspond-
ing results of the proposed U-net based method are shown in
Figs. 12(c) and 12(d), in which each section has been recovered
clearly with degraded defocus noise.
We have also tested the U-net method with a simulated holo-

gram of a rocket. The semi-transparent 3D rocket is shown in
Fig. 13. It has been divided into six uniformly separated sections
along the z-axis. The ith section is located zi away from the focal
plane, with z1 = 31mm and z6 = 36mm. Each slice has a size of
1mm × 1mm, and are sampled to 256 × 256 pixels, as can be
seen in Figs. 14(a)–14(f).

The reconstructed images with the traditional method are
shown in Figs. 14(g)–14(l), while the ones with the U-net-based
method are shown in Figs. 14(m)–14(r). The corresponding
reconstruction distances are set as z1 = 31mm,
z2 = 32mm, : : : , and z6 = 36mm. It can be seen from these
images that the proposed method outperforms the traditional
method in suppressing the defocus noise.
The quantified assessment results of each section are also ana-

lyzed. The results are shown in Figs. 15 and 16, in which number
of section denotes the ith sectional image. One can observe from
Fig. 15 that with the traditional method, the PSNR drops from
16 dB at Section-1 to 11 dB at Section-6. This is caused by the
defocus noise from other sections. While with the U-net
method, the output PSNR have been upgraded to around
35 dB, which indicates the improvement of the image quality.
The measured SSIM results of each method are shown in
Fig. 16. One can find that the value of the SSIM are all above
0.9 with the proposed U-net method. While for the case with
traditional method, the SSIM decreases from 0.36 at Section-1
to 0.28 at Section-6. This also implies better sectioning results
with the U-net method.
In conclusion, the U-net based method can be adapted to 3D

objects with multiple sections. It outperforms the traditionalFig. 11. (a) Object with two slices, and (b) the recorded hologram.

(a) (b)

(c) (d)

Fig. 12. (a) , (b) Sectional results of the conventional method. (c) , (d) Sectional
results of the proposed U-net method, with z1 = 9 mm and z2 = 10 mm.

Fig. 13. The 3D rocket.
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method in removing defocus noise as well as recoveringmultiple
sections. One can also deduce from the tables and figures in sec-
tion 3 that the improvement of the PSNR ranges from around
5 dB to 20 dB, which indicates better sectioning results over
the conditional method. However, the scenario of the object with
complex sectional images still needs further investigation. This
can be done either by increasing the training data sets or

adjusting the training mode in the deep learning algorithm.
These are all the future tasks to be done.

4. Conclusion

Speckle-like noise is generated by the random phase pupil in an
OSH system, which is hard to reduce. This work verifies the fea-
sibility of the U-net neural network for this task, which provides
a new way for us to realize fast and effective defocus noise sup-
pressing in OSH. Simulation results show that the proposed
method works well both in simple and complex graphics. We
believe that the proposed method can also be applied to other
digital holography systems, especially for biomedical applica-
tions where it is hard to get enough training data sets.
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